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Construction of an effective Hamiltonian for a three-dimensional Ising universality class
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The asymptotic and preasymptotic critical behavior in fluids, mixtures, and uniaxial magnets is believed to
be described by an effectivew4 scalar field theory with suitable, nonuniversal, coupling constants. The critical
parameters as well as the extent of crossovers and corrections to the leading critical behavior in physical
systems, crucially depends on the choice of these couplings. Here we propose a new method for deriving the
effective scalar field theory appropriate to a microscopic model in this universality class. Use is made of the
hierarchical reference theory, which implements the basic ideas of Wilson momentum space renormalization
group to microscopic Hamiltonians. The effective low-energy field theory is then analyzed by the minimal
subtraction scheme of Schloms and Dohm. We discuss the application of this method to the three-dimensional
Ising model and to the liquid-vapor phase transition. We make comparison with high-temperature expansion
results and with experimental data for rare gas.
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I. INTRODUCTION

Following the universality paradigm, physical system
presenting phase transitions are grouped in universa
classes according to their asymptotic critical behavior.
particular physical relevance is the three-dimensional~3D!
Ising universality class, which includes easy axis magn
fluids, and mixtures.

Nowadays it is well known that, in the critical region, a
these systems are described by aw4 scalar field Hamiltonian
Heff @1# which physically describes the long-wavelength flu
tuations of the order parameter. This effective Hamilton
depends on two coupling constants: the bare massr and the
self-interactionu of the field. Although the universal quant
ties ~i.e., critical exponent and amplitude ratios! are indepen-
dent of the value ofu.0, this is not so for many physically
interesting properties in the asymptotic and preasympto
For instance, the critical temperature, the amplitude of or
parameter fluctuations, the extension of the critical regi
the importance of corrections to scaling, the presence of
tectable crossover regions with well-defined effective criti
exponents, all depend on the particular value of the s
interaction term inHeff which governs the coupling of fluc
tuations on different lengthscales.

Actually, some doubt on the accuracy of aw4 effective
Hamiltonian for describing the preasymptotic critical beha
ior of the Ising model has been reported in the literature@2#.
In particular, the possible relevance of higher-order inter
tions ~like a w6 term! or of irrelevant symmetry breaking
terms~such asw5) should be investigated.

Quite accurate nenormalization-group~RG! methods have
been developed for obtaining the physically relevant qua
ties out of aw4 effective Hamiltonian@3–6#. Using either
large ordere-expansion results near dimension four or wea
coupling expansion of theb function in a Callan-Symanzik
equation, explicit expressions for the order parameter, co
lation length, and susceptibility of thew4 model can be
evaluated. The missing ingredient is still the link betwee
1063-651X/2001/64~2!/026122~12!/$20.00 64 0261
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specific microscopic model and the effective coarse grai
Hamiltonian, which requires the tracing out of all ‘‘shor
wavelength’’ fluctuations.

In order to clarify these issues, it is therefore important
find a systematic way to build up an effective Hamiltoni
out of a given microscopic model. The natural tool to addr
this class of problems is the hierarchical reference theory
fluids ~HRT! @7,8# which implements the basic ideas of Wi
son momentum space RG in the framework of liquid st
theory.

This theory allows, starting from the microscopic Ham
tonian of the model, to derive an exact hierarchy of differe
tial equations describing the evolution of then-point corre-
lation function of the system when fluctuations on larger a
larger lengthscales are included.

However, in order to go beyond dimensionality expa
sion, it is necessary to introduce some kind of approximat
into the theory~closure or truncation!.

In the numerical analisys of HRT performed so far, on
the first equation of the hierarchy has been treated by imp
ing an Ornstein-Zernike~OZ! form for the pair-correlation
function. The results obtained are in good agreement w
experiments and simulations, satisfying scaling and hyp
scaling with nonclassical critical exponents whose valu
however, typically deviate from the exact ones by 5%–10
The description of first-order phase transitions should also
improved because HRT predicts an unphysical divergenc
the compressibility at coexistence.

It is important to point out that these problems are on
due to the introduction of an approximate closure relat
and do not represent a limitation of HRT. In fact, it has be
verified @8# that the second-ordere expansion of the hierar
chy correctly reproduces the well-known results obtained
Wilson @1# for the critical exponents.

The good accuracy of HRT on the description of the flu
in regions not asymptotically close to a phase transition, s
gests that the key ingredient missing in HRT with the pres
closure is just the correct treatment of very long-wavelen
©2001 The American Physical Society22-1
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fluctuations, which determine the universal quantities. On
other hand, we know that, on those lengthscales, the mod
well represented by a coarse grained effective Hamilton
possibly of thew4 form. Therefore, it is rather natural t
attempt to use the HRT formalism to trace out fluctuations
to a certain wave vector cutoffL, and then switch to a field
theoretical description based on an effective Hamiltoni
This is precisely the program of this paper, which will b
presented in the following sections.

Section II contains a brief summary of the HRT forma
ism, to make the paper self-contained, together with the
cussion of the method we used to extract from HRT
couplings of the effective Hamiltonian. The RG equation
adopted to analyze the effective Hamiltonian, is also
ported. In Sec. III we show three applications of this form
ism to the Ising model and to two models of fluids. Secti
IV contains some conclusion and perspective.

II. THEORY

A. HRT equations

Let us consider the equilibrium properties of a classi
fluid consisting of particles interacting through the two-bo
potentialv(r ). The starting point in the derivation of HR
equations is the separation of the interatomic interactionv(r )
in two parts@8#:

v~r !5vR~r !1w~r !. ~1!

Here vR(r ) is a short-range~mostly! repulsive term~refer-
ence! whose thermodynamic and structural properties are
sumed known, at least numerically. Instead,w(r ) is an at-
tractive term, which triggers the phase transition. Using t
separation and performing a Legendre transformation on
grand canonical partition function, a formal diagramma
expansion for the Helmoltz free energy can be written at
orders in perturbation theory. In order to describe the evo
tion of the thermodynamic quantities due to the inclusion
fluctuations, we implement the basic ideas of Wilson’s R
approach@1# within such a formal perturbative expansio
We first define a sequence of intermediate ‘‘attractive’’ p
tentials characterized by an infrared cutoffQ in Fourier
space:

wQ~k!5H w~k!, k.Q

0, k,Q,
~2!

and we study how the properties of the system, interac
via vQ(r )5vR(r )1wQ(r ), evolve whenQ is varied form`
down to 0. In this way, the Fourier components of the attr
tive part of the physical interaction may be included sel
tively, starting form the shorter wavelengths; in fact in t
Q→` limit wQ(k) vanishes and we reduce to the referen
system, while asQ→0 the full interactionv(r ) is recovered.
Physically, this procedure corresponds to inhibit fluctuatio
over wave vectors smaller thanQ, thereby reproducing the
momentum shell integration RG. At levelQ, effects due to
the nonlinear coupling of density fluctuations are retain
only for k.Q; we will refer to such a system as theQ
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system. Notice that with this approach, no operation
coarse graining is performed and all length scales are pre
in the Q system. The special choice~2! for the interatomic
interaction is able to allow the gradual turning on the lon
wavelength fluctuations typical of RG.

Remarkably, it is possible to obtain an exact set of diff
ential equations expressing the change in physical prope
when the cutoffQ is varied. They have the structure of
hierarchy of evolution equations for the free energy and
n-point correlation functions. Here we only report the fir
equation of the hierarchy, which governs the inclusion
fluctuations in the Helmholtz free energy of the model

2
d

dQ S 2bA Q

V D5
1

2Ek5Q

dVk

~2p!3 ln@11rS Q~k!f~k!#,

~3!

wheref52bw, while A Q/V andS Q(k) are, respectively,
the free-energy density and the structure factor of theQ sys-
tem. At the beginning of the integration (Q→`) both these
quantities acquire their mean-field values, which in fact n
glect the nonlinear coupling of fluctuations.

The second equation of the hierarchy relates theQ deriva-
tives of C Q(k) to the three- and four-point correlation func
tions. Analogously the other equations of the hierarchy g
relations that link theQ derivative of then-point correlation
function to the correlation functions of order up ton12.
This formal hierarchy of equations is exact in the who
phase diagram of the model. However, in order to obtai
closed-form equation, which can be numerically solved,
must introduce some approximation. We will consider t
first equation of the hierarchy with a closure relation expre
ing the structure factorS Q(k) in terms of the free energy
A Q. This closure is inspired by the so-called optimized ra
dom phase approximation of liquid state theory, which
known to describe the structure of a fluid rather accurat
@9#. The details of this closure can be found in Ref.@8#. Here
we only point out that this approximation belongs to t
class of the ‘‘Ornstein-Zernike’’ closures characterized by
analyticity of the correlation function in a neighborhood
k50, even at the critical point:

1

rS Q~k!
;

k→0

2
]A Q

]r2 1b0k2, ~4!

where b0 is a nonuniversal constant, related to the mic
scopic interaction and assumed to be finite in the wh
phase diagram of the model. Atk50, this relation is exact
and gives the compressibility sum rule. Closure relation~4!
unavoidably implies the vanishing of the critical exponenth,
thereby introducing serious approximations in the evaluat
of universal properties at the critical point.

The growth of the long-wavelength fluctuations in th
critical region makes this relation~4! less and less accurat
asQ goes to zero, leading to a not very accurate determ
tion of the critical exponents and to an unphysical diverge
of the compressibility when the coexistence curve is
proached.
2-2
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CONSTRUCTION OF AN EFFECTIVE HAMILTONIAN . . . PHYSICAL REVIEW E64 026122
In Sec. III A we will discuss an application to the Isin
model on a square lattice. Treatment of lattice systems
quire some modification to HRT equations presented ab
~details can be found in Refs.@8,10#!. Here we only recall
that the integration in real space is replaced by sums,
momentum space integration must be limited to the first B
louin zone. Due to the anisotropy of the boundary of t
zone, integration over the spherical surfaceuku5Q in Eq. ~3!
is not appropriate, but the integration can be performed o
any surfaceSQ that spans the Brillouin first zone. The pa
ticular form of the potential and of the closure relation ma
the following choice for the surface very convenient:

SQ5H k:
1

2
2

1

2d (
a51

d

coska5QJ . ~5!

B. The critical region in the HRT

If the system is in the critical region and we analyze t
asymptotic evolution at long wavelengths~i.e., asQ→0) Eq.
~3! with the low k form of the closure relation~4! can be
written in a universal form, independent of the details of t
microscopic interaction:

l
]HQ

] l
1

1

2
z

]HQ

]z
2dHQ5

1

2
lnS 11]2HQ/]z2

11~]2HQ/]z2!uz50
D .

~6!

Here the following definitions have been employed:

HQ52
1

Kd
Q2dS 2bA Q

V
2

2bA Q

V U
r5r0

D , ~7!

z5S b0

Kd
D 1/2

~r2r0!Q2(d22)/2, ~8!

where ford53, Kd5(2p2)21, andQ5Q0 / l , r0 is the criti-
cal density and the initial condition is set atQ5Q0. Equa-
tion ~6!, with some straightforward substitution@8,11#, is for-
mally identical to a Wegner-Hougton RG equation for
scalar field theory in the local potential approximation~LPA!
@12#. This equation describes the RG flow of an effecti
Hamiltonian of the type

He f f5E F1

2
„“w~x!…21v2w2~x!1 (

m53

`

vmwm~x!Gddx

~9!

as fluctuations are included under the assumption that the
flow does not generate nonlocal effective interactions. Thi
in fact an approximation, similar in spirit to our OZ closu
~4!. In Eq. ~9! the ultraviolet~UV! cutoff uqu,1 on the mo-
mentum of the Fourier transformed fluctuating fieldwq , is
also understood. The identity between the asymptotic fo
of the HRT equation and the RG equations for a scalar fi
in LPA, allows us to identify, in the long-wavelength regim
02612
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the expansion coefficients of the local potentialV in the ef-
fective Hamiltonian~9! with the derivatives of the HRT free
energy evaluated atQ0:

vm5
1

~m!!

Qm/223

bm/2

]m

]rm S bA Q~r!

V D
r5rc

U
Q5Q0

. ~10!

The integration over the short-wavelength fluctuationsQ
.Q0), performed by the HRT evolution equations, togeth
with the defining relation~10! allows us to connect the mi
croscopic model interacting via the potential~1! with an ef-
fective Hamiltonian of the form~9! which describes the
long-wavelength effective model appropriate to our physi
system. Within this scheme, all the short-wavelength det
of the microscopic model are explicitly integrated out a
contribute to the definition of the expansion coefficien
~self-interactions! in the effective Hamiltonian. These value
are therefore specific to the particular model we are study
Conversely, universal quantities like critical exponents a
amplitude ratios are the same for all models of the 3D Is
universality class. The effective Hamiltonian constructed
this method describes the long-wavelength fluctuations of
system in the momentum range fromQ0 to 0, which drive
the critical behavior. However, it also retains the informati
about the nonuniversal properties of the system through
values of the interactionsvm , which do depend on the mi
croscopic structure of the model.

C. Dohm equations

At this stage we have just developed a systematic wa
derive an effective Hamiltonian describing the physical s
tem in the critical region. In order to obtain the physic
properties of the microscopic model we have to resort
some method able to calculate averages and correlation f
tions for field theoretical Hamiltonians of this form. Th
Hamiltonian represents a self-interacting real scalar field
is supplemented by an UV cutoffL. This program can be
efficiently achieved in the context of minimal subtraction R
scheme@13#. In particular, we choose the formulation due
Schloms and Dohm@3,4#, where renormalization is per
formed directly in three dimensions without using th
e-expansion technique. Furthermore, Dohm already gi
expressions for various physical observables above and
low the critical temperature, and the renormalizing functio
employed are known from accurate Borel resummation
high loop order perturbative expansion. This allows us
obtain very accurate results for universal quantities wh
values are reported in Refs.@3,4,14#. This method has been
applied just to aw4 theory, and therefore we assume to tru
cate our general local potentialV(w) in Eq. ~9! to fourth
order. We only recall the main steps in deriving these R
equations. The starting point is therefore the bare Ham
tonian for aw4 theory:

Hw5E ddxF1

2
r 0w0

21
1

2
~“w0!21u0w0

4G . ~11!
2-3
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A. BROGNARA, A. PAROLA, AND L. REATTO PHYSICAL REVIEW E64 026122
In Eq. ~11! the odd powers have been neglected beca
close to the transition, the effective Hamiltonian is invaria
under the changew→2w, and higher-order powers are i
relevant in the RG sense.

The expressions for the susceptibility and correlat
length are

x° ~k!5G° (2)~k,r 0 ,u0 ,L,d!21, ~12!

j~r 0 ,u0 ,L,d!5$x° ~0!@x° ~k!21#uk50%
1/2, ~13!

whereG° (N) are the bare vertex functions. The critical val
of r 0 (r 0c) is implicitly defined by

G° (2)~0,r 0c ,u0 ,L,d!50. ~14!

This allows us to express the vertex functions in terms of
differencer 02r 0c , which will be convenient by virtue of the
super-renormalizability of aw4 theory below four dimen-
sions. The theory is then regularized at a certain value of
momenta~subtraction point! using the minimal subtraction
scheme@13#. Finally, the use of Callan-Symanzik equation
allows us to obtain finite renormalized vertex functions, e
pressed in terms of renormalized quantities, at every ene
Integration of the Callan-Symanzik equation leads to the
lowing expression for the susceptibility:

x5x° ~k50!

5Zw~u! f (2)@1,u~ l !,3#21l 22 expE
u( l )

u zw~u8!

bu~u8!
du8,

~15!

du~ l !

d ln l
5bu@u~ l !,1# with u~ l 51!5u5Zu

21Zw
2K3u0 .

~16!

Here 1, l ,` is the renormalization parameter~measured
in mass units of 1/m) which defines the momentum scale
the renormalization point. The functionszw(u), Q(1,u,3),
z r(u), bu(u), andZr(u) are known by Borel summation o
perturbative loop expansion@3,4,14#. Now, using the expan
sion coefficients~10! as initial conditions for the Dohm
equations, we are able to obtain the behavior of quantitie
physical interest.

The above procedure can also be performed belowTc .
We only report the Dohm equations for susceptibility a
order parameter@4#:

x2~k!5Zw~u! f 2
(2)@u~ l 2!#21l 2

22 expE
u( l 2)

u zw~u8!

bu~u8!
du8,

~17!

^w0&
25Zw~u! f w@u~ l 2!# l 2expE

u( l 2)

u zw~u8!

bu~u8!
du8, ~18!
02612
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du~ l 2!

d ln l 2
5bu@u~ l 2!,1# with u~ l 251!5u5Zu

21Zw
2K3u0 .

~19!

In this case, however, the renormalizing functions for t
order parameter$Zw(u), f w@u( l )#,zw(u)% are known with
lower accuracy, so we expect a lower accuracy in the de
mination of this quantity.

Integration of the Dohm equations can be easily p
formed numerically by a standard adaptive Runge-Kutta
ghoritm @15#. The only quantity, which is not given, is th
value of r 0c ; we have chosen the value obtained from t
integration of HRT at the HRT critical temperature via E
~10!. In this way, the critical temperature of the model
fixed to its HRT estimate, which is actually quite accurate
all the models we are going to examine. Another point to
discussed is that Eqs.~16! and ~19! do not contain the tem-
perature variable that just enters through the initial values
the coupling constantsr 0 ,u0. Even if the hypothesis of linea
dependence ofr on t is the most popular choice in the litera
ture, in our case we prefer to relax this ansatz by integra
the HRT equations at every temperature of interest determ
ing the values ofr 0 and u0 via Eq. ~10!. The value ofl, at
which we stop the integration of the Dohm equations,
implicitly defined by

r 02r 0c5Zr~u,1!Q@1,u~ l !,3#expE
1

l

~22z r !
dl8

l 8
~20!

and physically corresponds to the inverse correlation len

j5 l 21. ~21!

In summary, our method consists of integrating the H
equations at every temperature down to a suitable valu
the cutoff wave vectorQ0 in order to generate the expansio
coefficients of the effective Hamiltonian. At this point, in
stead of proceeding with the full integration of HRT down
Q50, we use the coefficientsr 05v22v2c and u05v4 ob-
tained in this way to integrate the Dohm equations. In p
ticular, the value ofu0 gives the initial condition, while the
value ofr 05v22v2c is used in Eq.~20! to obtain the value
of l at which we stop the integration.

III. RESULTS

Before showing the results obtained by the method d
cussed in the previous sections, we briefly discuss a
open questions, which are still present at this point. Firs
all, we have established a connection between HRT in
closure and Dohm equations, but we do not know what is
range of numerical values of the cutoffQ at which this iden-
tification is correct, or if such a range of values exists.
fact, as we proceed in the integration of the HRT equatio
the OZ closure becomes less and less accurate, while
identification with aw4 theory becomes more accurate b
cause we are entering the critical region and all irrelev
terms disappear in the effective Hamiltonian@16#. Second, if
2-4
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CONSTRUCTION OF AN EFFECTIVE HAMILTONIAN . . . PHYSICAL REVIEW E64 026122
such a range of values exists, consistency requires that p
cal quantities must show very little dependence on the ch
of the matching point in the range.

In the following discussion, all physical quantities pr
sented are expressed in natural units, taking as unit length
lattice spacing for the Ising model and of the particle dia
eter s for the fluid represented by either a Lennard-Jon
~LJ! or an Aziz potential.

A. Ising model

As a first check of our method, we have considered
Ising model. Studying this model~whose properties are
known with high accuracy from other methods like ser
expansion@17,18#! will allow us to test the proposed metho
to construct the effective Hamiltonian and to get some inf
mation about the matching value of the cutoffQ. In Fig. 1,
we show the behavior of the first few even coefficientsv2 ,
v4, andv6 as the integration of the HRT equations is carri
out. The divergence of the coefficientsv2 andv4 at Q50 is
due to the presence of negative powers of the cutoff in
definition ~10!. We only note that the divergence chan
from 1` to 2` is above or below the critical temperatur
Looking at Fig. 1, it can be seen that the coefficientv6 has a
minimum, so one can think to fix the matching point at th
value ofQ, in order to minimize the effects induced by n
glecting this term. In fact some authors argued thatv6 may
be important in the description of the preasymptotic reg
@2#. Nonetheless we empirically find that the results obtain
for physical quantities shows very little dependence from
matching value in the region 0.5,Q,1.25. So we arbitrarily
choose to fix at each temperature the matching value aQ
51.0, in order to obtain a unified criterium even for oth
models which do not display the minimum in thev6 coeffi-
cient ~see Fig. 4 and 8!.

In Figs. 2 and 3 the reduced temperature dependenc
the susceptibility, correlation length, and order parameter
shown on a decimal logarithmic plot. In this way th
asymptotic slope of each quantity is identified with the re
tive critical exponent. Notice that the present theoretical
sults contain no free parameters and the comparison is
formed at the same reduced temperature. We recall tha
HRT critical temperature is within 0.5% from the corre
value @10#.

Looking at Fig. 2 one can see that HRT results are in v
good agreement with Fisher’s predictions at high tempe
tures. In fact, at these temperatures, the effects of a non
value forh is very small so that the OZ closure relation is
good approximation of the two-point correlation functio
C Q(k). Conversely below a reduced temperature of ab
1022, HRT predictions already deviate from the correct
sult. This deviation is an effect of the approximation induc
by an OZ closure relation, which leads to the mention
overestimations of the critical exponents (g51.378, n
50.689, b50.345) @8#. Conversely, at this temperatur
scale, Dohm equations are already rather accurate.

Figure 3 shows the results for the susceptibility and or
parameter below the critical temperature. The asymptotic
havior of the susceptibility turns out to be in good agreem
02612
si-
e

he
-
s

e

s

-

e

n
d
e

of
re

-
-

er-
he

y
-
ro

t
-
d
d

r
e-
t

with Dohm predictions, even if small deviations are st
present for logutu.24. HRT results are not displayed be
cause, as already stated, in this region it gives an identic
infinite susceptibility on the coexistence curve.

FIG. 1. The expansion coefficientsv2 , v4, andv6 for the Ising
model (Q in units of inverse lattice spacing!. Solid line, t
51.031023; dashed line, t50; and the dot dashed line,t
521.031023. The divergence of coefficientsv2 and v4 nearQ
50 is due to the presence of powers ofQ in the denominators~10!.
Exactly at the critical temperature these coefficients tend to a fi
limit, otherwise, they diverge to6`, according to whether we are
above or belowTc .
2-5
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FIG. 2. The reduced suscept
bility ~in units of ideal gas suscep
tibility ! and correlation length~in
units of lattice spacing! for the
Ising model aboveTc . Solid line,
Fisher Burford approximants@17#;
dot-dashed line, HRT results; an
the dashed line, Dohm equation
The new calculation scheme a
lows us to obtain correct critica
exponents. Correlation length i
measured in units of lattice spac
ing.
re
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Dohm results for the order parameter are in good ag
ment with Fisher’s predictions for logutu,22.

We believe that the somewhat lower accuracy obtai
for the amplitude of the order parameter is due only to
lower accuracy, mentioned above, for the renormalizat
functions available for this quantity@4#.

B. LJ potential

In order to study and to test the validity of the procedu
outlined in Sec. II, we applied all the above method to
study of a LJ fluid@19,20#. In this case the reference syste
is the hard-sphere gas.
02612
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d
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As already stated above, thev6 coefficient, Fig. 4 does
not display any minimum and so we have chosen to fix
value of cutoff atQ51.0 as for the Ising model~length units
are set by the particle diameters). The behavior of the ex-
pansion coefficientsv2 andv4 in the limit Q→0, is the same
as for the Ising model. Figure 5 shows the behavior of
first two odd expansion coefficientsv3 and v5 @see Eq.~9!
and ~10!#. Their value atQ51.0 differs from zero becaus
the w→2w symmetry is recovered only asymptotical
close to the critical point. The divergence ofv3 and v5 at
Q50 for t50 is not exactly at the critical density. In th
following, we disregard the odd terms even at finiteQ be-
2-6
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cause their inclusion would require a generalization of
RG equations, which is not yet available.

Even in this case, the final results show no signific
dependence on the value ofQ in the range 0.5,Q,1.5.

Unfortunately, comparison with results obtained fro
other methods, is not as easy as before, because, to the
of our knowledge, Monte Carlo simulation results are n
available in the critical region.

We choose to compare only the asymptotic behavior
the physical quantities above and belowTc with the experi-
mental results for Kr@21#, results for other rare gases a
very similar.

Figure 6 shows the behavior of the isothermal redu
compressibility@S(0)5nkBTkT# and the correlation length
aboveTc . Correlation length amplitude and critical exp
nents obtained by Dohm equations are in very good ag
ment with experimental results, and also HRT predictions
in good agreement with experiment unless temperatur
very close toTc . Conversely, the Dohm amplitude for com
pressibility is not so good as for the Ising model~2! and we
find a deviation of about 30%. Also the HRT results und
estimate the experimental data over most of the tempera
range.

In Fig. 7 the results for the compressibility and the ord
parameter below critical temperature are presented. As
are aboveTc , our results for the susceptibility amplitude, a
not in very good agreement with experimental data, wh
the estimates of the order parameter appear to be accur

A possible origin of the discrepancies encountered in
behavior of the compressibility both above and belowTc ,
derives from the fact that the LJ potential does not desc
very well the true intermolecular interaction for a rare g

FIG. 3. The reduced susceptibility~in units of ideal gas suscep
tibility ! and magnetization~in the number of spins per site! for
the Ising model belowTc . Solid line, the Fisher-Burford-Essam
approximants@18#; dot-dashed line, HRT results; and the dash
line, Dohm equations. HRT predictions for susceptibility in th
case are identically infinite. In both cases, the agreement with F
er’s extrapolations is very good.
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@22#. Another source of inaccuracy can be the presence
fluid of odd terms. We will comment on this in Sec. III C.

C. Aziz Axilrod-Teller potential

In order to check whether the discrepancies in the susc
tibility amplitude presented in Figs. 6 and 7 are due to

h-

FIG. 4. The expansion coefficientsv2 , v4, and v6 for the LJ
fluid at the same reduced temperatures of the Ising model Fig. 1Q
in units of inverse lattice spacing!. Solid line,t51.031023; dashed
line, t50; and the dot-dashed line,t521.031023.
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fact that LJ potential does not represent accurately the
croscopic interaction of a rare gas, we applied the previou
discussed technique to a more accurate potential@22,23#
which is believed to describe well the properties of the r
gas. The total interaction is of the form

V~r1 , . . . ,rN!5(
i , j

vAziz~ ur i2r j u!1 (
i , j ,k

vAT~r i ,r j ,rk!.

~22!

Here the Aziz potential@24# has been used for the two-bod
interaction, and the Axilrod-Teller term@25# describes the
three-body forces. This last term, which is mostly repulsi
is included in the reference system together with the rep
sive part of the Aziz two-body interaction. Thermodynam
and correlation properties of the reference system are ca
lated using the modified hypernetted chain~MHNC! approxi-
mation, extended to treat three-body forces@26#. Details of
computation can be found in Ref.@22#.

The expansion coefficients~Fig. 8! display the same be
havior found for the LJ potentials in the limitQ→0, and the

FIG. 5. The behavior of the odd expansion coefficientsv3 and
v5 for the LJ potential (Q in units of inverse lattice spacing!. Solid
line, t51.031023; dashed line,t5031023; and the dot-dashed
line, t521.031023. At Q51, their value differs from zero be
cause invariancew→2w is restored only asymptotically close t
the critical point. Divergence atQ50 also for t50, is due to the
density, which is not exactly at the critical value.
02612
i-
ly

e

,
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v6 term does not present any minimum, so again we cho
to fix the value of the matching cutoff atQ51.0 as before.

Odd term coefficients obtained at the same reduced t
peratures of LJ are shown in Fig. 9. Nonzero value of th

FIG. 6. The reduced isothermal compressibility~in units of ideal
gas compressibility! and correlation length~in units ofs) for the LJ
potential aboveTc . Solid line, experimental data for Kr@21# in the
asymptotic region; dot-dashed line, HRT results; the dashed
Dohm equations. The agreement with susceptibility is not as g
as for the Ising model. Discrepancies in the amplitude factors
30% for susceptibility and 5% for the correlation length.

FIG. 7. The reduced isothermal compressibility~in units of ideal
gas compressibility! and order parameter~in units of s23! for LJ
potential belowTc . Solid line, experimental data for Kr@21#; dot-
dashed line, HRT results; and dashed line, Dohm equations. Ex
mental data for Kr are valid only in the asymptotic region. T
amplitude factor for susceptibility has been derived from the am
tude factor aboveTc using the universal ratio between these tw
quantities which is 4.8. Discrepancies for the susceptibility am
tude are 30%, while for the order parameter they are 10%.
2-8
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CONSTRUCTION OF AN EFFECTIVE HAMILTONIAN . . . PHYSICAL REVIEW E64 026122
coefficients atQ51.0 should be noted, while the divergen
at t50 is as before due to be only approximately at t
critical density.

FIG. 8. The expansion coefficientsv2 , v6, andv6 for the Aziz
Axilrod-Teller potential (Q in units of inverse lattice spacing!. The
reduced temperature is the same Figs. 1 and 4. Solid lint
51.031023; dashed line, t50; and the dot-dashed line,t
521.031023. As for LJ ~4! there is no minimum is thev6 coef-
ficient behavior. The matching procedure is done atQ51.0. The
behavior of expansion coefficients resembles that of Fig. 4 neaQ
50.
02612
The asymptotic region results aboveTc are shown in Fig.
10. Comparison is made as before with the experimental d
for Kr @21#. As can be seen, agreement for isothermal co
pressibility is improved~cf. Fig. 6! but correlation length
predictions are of slightly worse quality than that of LJ.

Similar considerations can be done for the results be
Tc, presented in Fig. 11, where results for isothermal co
pressibility are not very precise~even if better than the LJ
potential of Fig. 7; discrepancies in the amplitude factor
now about 12%! whereas predictions for the order parame
are good.

D. Terms beyond thew4 model

As stated in the previous sections, the good results
tained for the Ising model are not encountered in the susc
tibility of the fluid models. The discrepancies encounter
could be ascribed to the fact that, for fluid models, the eff
tive Hamiltonian~9! should include odd power terms. Thes
terms disappear only at the critical point (Q50) when in-
variancew→2w is restored. But atQ51.0, their presence
can affect the final results.

FIG. 9. The odd expansion coefficients for the Aziz potentialQ
in units of inverse lattice spacing!. Reduced temperatures are th
same for Fig. 5. Solid line:t51.031023; dashed line,t50; and the
dot-dashed line,t521.031023; Here as for the LJ case of Fig. 5
divergencies atQ50 for the critical temperature are due to be n
exactly at the critical density.
2-9
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A. BROGNARA, A. PAROLA, AND L. REATTO PHYSICAL REVIEW E64 026122
In order to test the effective relevance of the terms
glected from the Hamiltonian of Eqs.~9! and ~10! we com-
pared the second derivative of the free energy (]2A/]r2)
obtained from the HRT integration atQ51.0 with the poly-
nomial parametric representation obtained using the exp
sion coefficients of Eq.~10! evaluated at the same cutof
The results of this test are presented in Figs. 12–14. Fig
12 shows that the free energy of the Ising model is w
approximated by aw4 Hamiltonian~at least for low magne-
tizations!; the w6 term begins to be important only for mag
netization greater then 0.1. Figure 13~a! instead clarifies the
role of odd terms for LJ potentials. It can be seen that, e
at densities close to the critical density, the free energy is
well represented by aw4 Hamiltonian because of the pre
ence of the odd terms. However, it is possible to elimin
the effects of the first odd termw3 defining the critical den-
sity as the density at which]2A/]2r has its minimum. Figure
13~b! shows the results obtained with this redefinition of t
critical density, which must be lowered by 3%. It is al
possible to note that the second odd termw5 gives very little
correction. Figure 14 shows the same of Fig. 13 for the A
potential; in this case the critical density is lowered by 1.5
The contribution of thew5 term is greater than before.

We performed the integration of the Dohm equatio
evaluating the expansion coefficients of Eq.~10! at this ef-
fective critical density, both for LJ and Aziz potentials, b
the results for the physical quantities are almost unchan
by this redefinition. We conclude that thew3 term is not
responsible for the lower quality of the results for a fluid. O
the other hand, comparison of the contributions to the eff

FIG. 10. The reduced isothermal compressibility~in units of
ideal gas compressibility! and correlation length~in units of s) for
the Aziz Axilrod-Teller potential aboveTc . Solid line, experimental
data for Kr in the asymptotic regime@21#; dot-dashed line, HRT
results; and the dashed line, Dohm equations. The agreement
susceptibility is quite better than that obtained for the LJ fluid~dis-
crepancy in the amplitude factor is now of 12%!; conversely results
for the correlation length are just a little worse~accuracy for the
amplitude factor is about 10%!.
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tive Hamiltonian of terms beyondw4 for the Ising model
~Fig. 12! and for the fluid models~Figs. 13 and 14! shows
that these terms are more relevant for fluids model. The r
tive importance of thew6 term is similar for the two models
of a fluid and larger than in the case of the Ising model.
addition, thew5 term is very small for the LJ potential, but
is quite significant in the case of the Aziz potential wi
three-body forces, and this is in agreement with the gen

FIG. 11. The reduced isothermal compressibility~in units of
ideal gas compressibility! and order parameter~in units ofs23! for
the Aziz Axilrod-Teller potential belowTc . Solid line, experimental
data for Kr in the asymptotic regime; dot-dashed line, HRT resu
and the dashed line, Dohm equations. The error on the ampli
factor are about 12% and of 10% for susceptibility and order
rameter, respectively.

ith

FIG. 12. The free energy for the Ising modelA9
5]2(2bA/V)/]M2 is compared with the polynomial parametr
representation obtained forw4 (H4) and w6 (H6) Hamiltonians.
The contribution of thew6 term is negligible for magnetization
lower than 0.1.
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CONSTRUCTION OF AN EFFECTIVE HAMILTONIAN . . . PHYSICAL REVIEW E64 026122
understanding of the role of three-body forces on critica
@28#.

IV. CONCLUSIONS

We have developed a method that allows to obtain a qu
titative link between HRT, which is an implementation
Wilson’s momentum shell renormalization group, and R
equations, which instead are based on the minimal subt
tion scheme. This method requires the identification of a m
mentum scaleQ0, where the microscopic~HRT! and the

FIG. 13. The free energy for the LJ modelA95]2

(2bA/V)/]r2 (r in units of s23). The comparison is made with
polynomial parametric representations for the theories:H4

5v2(r2rc)
21v4(r2rc)

4, H35v2(r2rc)
21v3(r2rc)

31v4(r
2rc)

4, H55v2(r2rc)
21v3(r2rc)

31v4(r2rc)
41v5(r2rc)

5,
and H65v2(r2rc)

21v3(r2rc)
31v4(r2rc)

41v5(r2rc)
5

1v6(r2rc)
6. In the upper figure, expansion coefficients are eva

ated at the HRT critical density. Odd terms make it impossible to
the free energy with theH4 Hamiltonian. In the figure, expansio
coefficients are evaluated at the effective critical density, whereA9
has a minimum.
02612
n-

c-
-

coarse grained (w4) theories match. It is reassuring to ob
serve that indeed a range of values of the cutoff exists wh
this matching is possible and that the results do not stron
depend on the choice ofQ0.

The combined use of these two methods allowed us
obtain results for physical quantities above and below
critical temperature for the three models presented in S
III. In particular, susceptibility and correlation length predi
tions belowTc , represent an extension of the HRT result

Remarkably, the application of this method to the Isi
model led to results that are in very good agreement w
series expansion predictions, both above and below the c
cal temperature. The application of this method to fluid mo
els is less satisfactory. The results for correlation length
order parameter are in good agreement with experime
results for krypton, but the results for compressibility wh
the LJ potential is used, are not very good. When a be
representation of the interatomic potential is used, the ag
ment with experimental data in the critical region improv

-
t

FIG. 14. The free energy for the Aziz potential (r in units of
s23). Hamiltonians have the same meaning for Fig. 13. In this c
the (r2rc)

5 term is more important than for the LJ potential.
2-11
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A. BROGNARA, A. PAROLA, AND L. REATTO PHYSICAL REVIEW E64 026122
for the compressibility, but the correlation length is less
curate. Globally the quality of the results for a fluid model
significantly inferior to that for the Ising Model.

As a source of inaccuracy in the case of a fluid, tw
possibilities can be considered. The first one is that the lo
wavelength density fluctuations in a realistic fluid model, a
only approximatively described by aw4 theory. In fact we
find that, even within LPA, there are further interactions
be retained in the effective Hamiltonian expansion~9!, see
Figs. 16 and 19. The tests performed in Figs. 13 and
showed us that even the redefinition of the critical dens
which allows us to minimize the effects of the lowest o
term, gives no significant improvements on the physi
quantities. Furthermore, the crossover phenomena for fl
are much more complicated than for the Ising model@27#, so
the matching between HRT and Dohm equations may be
accurate. The second possibility concerns the interpar
potentials, which may describe the true interaction betw
the fluid particles in the critical region only approximativel
In addition there is an interplay between interatomic inter
tion and higher-order terms in the effective Hamiltonian. It
known @22# that the LJ potential is not an accurate model
the interatomic interaction, but when the more accurate A
potential is used, it is also necessary to introduce three-b
forces. In this last case, thew5 term becomes much mor
relevant@28# and it is plausible that what we gain with th
better modelization of the interatomic potential is lost by t
less accurate representation of the effective Hamiltonian
terms of thew4 model.

We hope that this paper will motivate the development
n

n-
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new techniques to deal with more complex field theori
which include external fields and higher-order terms in
expansion of the effective potential~9!. This would allow us
to get information about other physical quantities like t
magnetization along the critical isotherm, and to hopefu
improve the agreement with experimental data for fluid mo
els.

In particular, in Ref.@29# is discussed a theory that allow
to obtain susceptibility, correlation length, and order para
eter even in the preasymptotic region. Monte Carlo simu
tions of the Ising model are in good agreement with resu
predicted by this theory, as shown in Refs.@30,31#. However
the details of the specific thermodynamic model enter in t
theory only through parameters, which cannot be predic
by the theory itself, but must be derived from other metho
It may be interesting to use HRT to derive these parame
in order to try to improve the results obtained for the flu
models discussed.

Finally, the study of more sophisticated closure relatio
to the HRT equations, should also improve the accuracy
the determination of the initial conditions of the RG equ
tions.
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